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Abstract 

SARS-CoV-2 infection is causing a pandemic disease that is reflected in challenging public health 

problems worldwide. HLA-based epitope prediction and its association with disease outcomes provide an 

important base for treatment design. A bioinformatic prediction of T cell epitopes and their restricted HLA 

class I and II alleles was performed to obtain immunogenic epitopes and HLA alleles from the spike protein 

of the SARS-CoV-2 virus. Also, a correlation with the predicted fatality rate of hospitalized patients in 28 

states of Mexico was done. Here, we describe a set of ten highly immunogenic epitopes, together with 

different HLA alleles that can efficiently present these epitopes to T cells. Most of these epitopes are 

located within the S1 subunit of the spike protein, suggesting that this area is highly immunogenic. A 

statistical negative correlation was found between the frequency of HLA-DRB1*01 and the fatality rate in 

hospitalized patients in Mexico.  
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Introduction 

The coronavirus disease (COVID-19) was declared as a pandemic by the World Health Organization 

(WHO) in March of 2020.1 It is estimated that by June the 10th of 2020 there were over 6.19 million 

confirmed cases and 370 thousand deaths worldwide.  

COVID-19 is a disease generated by the novel severe acute respiratory syndrome-coronavirus-2 (SARS-

CoV-2), with a wide range of clinical manifestations, like fever (88.7%), cough (67.8%), fatigue (38.1%), 

and acute respiratory distress syndrome (ARDS) in severe cases.2 Interestingly, the molecular and clinical 

manifestations of the disease vary between asymptomatic, mild-symptomatic, and severe patients, requiring 

hospitalization in some cases to prevent fatal outcomes.3 

Currently, the SARS-CoV-2 genome has been characterized as a new betacoronavius, which shares around 

87% of genomic identity with bat-SL-CoVZC45 and bat-SL-CoVZXC21 viruses.4 A recent analysis by 

Zhou et al. reported that there is a 96.2% identity with BatCoVRaTG13 and a 79.5% identity with SARS-

CoV.2,5 The genomic characterization of the virus not only provides information about its taxonomy and 

probable origin but also offers opportunities to perform deeper analysis using bioinformatics tools. 

The angiotensin-converting enzyme-2 (ACE-2) receptor and the transmembrane serine protease 2 

(TMPRSS2) are essential components of the human host for the virus entry into the upper respiratory 

epithelial cells. The virus recognizes ACE-2 through the viral spike glycoprotein (S), and this event leads to 

the virus-cell membrane fusion.6 The S glycoprotein is found as a homotrimer of three identical monomers, 

each one of which is divided into two subunits: S1 and S2. The first subunit folds in four domains: A, B, C, 

and D. The B domain possesses a receptor-binding domain (RBD) that recognizes ACE2, hence it is 

important for viral entry.7 The S2 subunit sequence has two tandem domains, named HR1 and HR2, that 

play an essential role in the viral fusion to the membrane.8 Furthermore, analysis of the spike protein 

showed that it is conserved among SARS-CoV and SARS-CoV-2 with 76.3% of identity and 87.3% of 

similarity.9 
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Several studies focused on viral diseases have shown that clinical severity is closely associated with some 

individual factors, such as genetic background and immune response. The human leukocyte antigen HLA is 

responsible for the antigen presentation to T cells and, therefore, a key component for adaptive immune 

response initiation. The HLA genes are the most polymorphic genes in the human genome, and these 

polymorphisms influence the ability to present different sets of epitopes to T cells. Some HLA molecules 

are more efficient than others presenting certain antigens, which may lead to a better induction of immune 

responses. This fact has already been proven for some viral diseases like A H1N1 influenza 10 and HIV.11  

It has been previously reported an association between SARS-CoV infection and HLA-B*07:03,12 HLA-

Cw*08:01,13 HLA-B*46:01, and HLA-B*54:01. Specifically, it has been reported that the individuals who 

are HLA-B*46:01 positive have a higher risk of severe infection,14 whereas the frequency of HLA-

DRB2*03:01 is lower among COVID-19 patients.12 

Mexico is one of the top ten countries with higher mortality, and its number of cases and deaths keeps 

increasing significantly.15 Some of the most common haplotypes reported in Mexico’s less affected states 

are HLA A*02-B*35-DRB1*08-DBQ1*04, A*68-B*39-DRB1*04-DBQ1*03:02 and A*02-B*15-

DRB1*08-DBQ1*04, according to the Allele Frequency Net Database website 

(www.allelefrequencies.netwww.allelefrequencies.net)16. 

On the other hand, up to now, Mexico City is the region with the highest number of reported cases. The 

studies regarding allele frequency in this city have reported that its haplotype is largely composed of Native 

American haplotypes, specifically 63.85 ± 1.55% American, 28.53 ± 3.13% European, and a less apparent 

7.61 ± 1.96% African. 17. Individually, some studies have reported that the most frequent alleles in Mexican 

population are HLA-A*02, -A*24, -A*68, -B*35, -B*39, -B*51, -DRB1*04, -DRB1*08, -DRB1*07, -

DQB1*0302, -DQB1*0301, and -DQB1*0201.18 Nonetheless, there are no studies related to the HLA 

association with the susceptibility or the resistance against COVID-19 in the Mexican population. The 

understanding of the relationship between viral infection, HLA, and disease susceptibility is important to 

drive towards vaccine development and molecular epidemiology research that can contribute to novel 

therapies.  
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So far, the control of the COVID-19 pandemic remains a challenge, resulting in thousands of new cases and 

deaths reported daily. It is necessary to find prophylaxis and specific treatments to contain this uncontrolled 

infection and to reduce the global morbidity and mortality. The generation of a vaccine that targets this 

virus remains as the primary solution, 19 however, the lack of knowledge regarding the immune response, 

such as the HLA-virus interactions, makes it a challenging task. 

Additionally, the genetic variations among different populations and their possible link with SARS-CoV-2 

viral responses remain unknown. In this report, we analyze which epitopes of the SARS-CoV-2 spike 

protein are highly immunogenic and able to be presented by HLA class I and II in different populations 

using bioinformatic tools. We also demonstrate an ecological correlation between HLA allele frequency 

and the predicted fatality rate in hospitalized patients of 28 Mexican states.  

Methods  

Study design 

A bioinformatic epitope prediction of the spike glycoprotein was performed. This gave information about 

the most immunogenic peptide-HLA matches and the HLA alleles that are more likely to present these 

epitopes efficiently. Also, an ecological study was made to look for correlations between the HLA allele 

frequencies and the predicted fatality rate of hospitalized COVID-19 patients to May 29th, 2020. 

Bioinformatic epitope prediction 

Bioinformatic analyses were performed to predict HLA class I and II epitopes using the sequence of the 

SARS-CoV-2 Spike protein. The sequence for the SARS-CoV-2 Spike Glycoprotein was obtained from the 

GenBank with the accession number QHR63290.2 in FASTA format. This sequence was then submitted to 

the TepiTool server from the IEDB Analysis Resource database (http://tools.iedb.org/tepitool/).20 The 

epitope prediction was performed for the 27 most frequent HLA-A and -B alleles that cover for most 

populations (Supplementary Table 1).21 Once the total epitope list was obtained, it was submitted to the T 

cell class I pMHC immunogenicity predictor server (http://tools.iedb.org/immunogenicity/) to get the 

immunogenicity score, which is predicted according to the aminoacid residues of the peptide.22  
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The peptide-HLA pairs with a positive immunogenicity score and a predicted IC50 level lower than the 

established cut-off (Supplementary Table 2) from the complete list were chosen, 23 considering that the 

lower the IC50 value, the higher the binding affinity. The ten more immunogenic peptide-MHC 

combinations from this list were selected. 

The epitopes for HLA class II molecules were also predicted using the same sequence as before and 

submitting it to the IEDB MHC class II epitope prediction tool (http://tools.iedb.org/mhcii/) using the 

IEDB recommended 2.2 algorithm and the most common HLA-DP, DQ and DR alleles (Supplementary 

Table 1).24 The predicted epitopes with an SMM-predicted IC50 value higher than 50 were excluded and 

the sequences were ordered by the percentile rank.25 The MHC-II prediction tools use a core of nine 

aminoacids to predict the best peptide binding affinity, even when the class II molecules bind peptides with 

15 aminoacid length, so the ten SMM cores with the minor percentile rank —what means the highest 

affinity binding— were selected. 

Structural modeling 

To provide a graphical representation of the epitopes location, we used structural model the full-length 

SARS-CoV-2 spike glycoprotein (ID:6VSB_1_1_1). The full-length SARS-CoV-2 structural model is 

available at CHARMM-GUI13 COVID19 Archive. 26  

The 3D structure was obtained and analyzed using PyMOL® software (Schrödinger LLC. Molecular 

Graphics System (PyMOL). Version 1·80 LLC, New York, NY. 2015). The basic local alignment search 

tool online (https://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to assess the position of the predicted 

peptides in the glycoprotein and the protein sequence was adjusted manually using the PyMOL tools. 

Analysis of HLA alleles frequency and fatality rates  

We selected 28 states of Mexico considering the homogeneity in epidemiological reports and registered the 

allele frequency of the main capital city of each state. All the states were included except for Mexico state, 

Baja California Sur, and Tamaulipas because no information was found. 
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We used the Allele Frequency Net Database (AFND, http://www.allelefrequencies.net/default.asp) and 

searched for populations in North America's geographical region and used Mexico's (132) database. The 

total states samples reported on the databases was of 5840. 

For HLA class I, the subgroup alleles were not reported for 26 of the states. However, Mexico City Mestizo 

and Veracruz Xalapa did contain subgroup data. 

In the selection of the class II molecules, the HLA-DPA1*03:01, DPB1*04:02, HLA-DPA1*01:03, 

DPB1*02:01, HLA-DPA1*02:01, DPB1*01:01, and HLA-DQA1*05:0 alleles were not found in the 

database of any population. All the frequency data is summarized in the Supplementary Table 3 organized 

per city.  

Fatality rate 

We used national public data reporting all individuals with a result for SARS-CoV-2 in Mexico to July 8th, 

2020 (SARS-CoV-2 Mexico database). This database is compiled by the Ministry of Health (available at 

https://www.gob.mx/salud/documentos/datos-abiertos-152127). We considered the following information: 

age, sex, state of birth, date of birth (if applicable), and type of healthcare facility where the patients were 

assisted —IMSS, ISSSTE, SSA, private hospital, and others—. There is also information about 

comorbidities —diabetes, hypertension, obesity, asthma, immunosuppression, chronic kidney disease, and 

cardiovascular disease—, smoking status, and hospitalization status. The registration options were yes, no, 

not known, or not specified. Finally, it is specified whether the patients were attended in sentinel units. The 

primary care sentinel institutions test for SARS-CoV-2 to one of every ten patients with an acute 

respiratory infection, while the non-sentinel institutions perform tests according to physician criteria. The 

100% of patients with severe acute respiratory infection who require hospitalization are tested in both 

institutions, sentinel and non-sentinel. 27 

The total database contained 684 804 records. We only included records of phase 3 (614 370). We excluded 

60 520 patients who were admitted for hospitalization after July 1st to allow the presentation of the outcome 

"death", since the median from hospitalization to death was 7 days. Of the 553 850 remaining records, 307 
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421 had a negative or pending result, 173 724 were not hospitalized, 123 did not have information of the 

state of birth, and 1 026 were indigenous people. We excluded 448 pregnant women because the immune 

response is expected to be different.28 Finally, 9 records were eliminated because the date of death was 

before the admission date. Hence, our final sample was 71 099 records.  

Statistical analysis 

To create a predictive model of the hospitalized fatality rate —number of deaths caused by COVID-19—, 

we performed a stepwise approach with all the variables reported in the SARS-CoV-2 Mexico database in a 

Poisson model. All the variables that were significantly associated with death were kept in the model: age, 

sex, diabetes, hypertension, obesity, chronic kidney disease, type of healthcare, being a sentinel unit or not, 

and admission date. We explored if a multilevel model, using state of birth as a second level, would be a 

better fit for the data, but the LR test was not significant (p-value=1). Hence, the state of birth variable was 

included in the Poisson model. Afterward, the predictive risk of death in each state was calculated. Then, a 

factorial analysis was performed with the 21 HLA types to determine groups that explained the variance 

between them and selected the representative HLA allele of each factor as the one with the maximum 

correlation within the factor. We selected seven factors that explained 85.2% of the variance and selected 

the HLA with the highest correlation within each factor as follows: factor 1 HLA-A*68:01, factor 2 HLA-

A*11:01, factor 3 HLA-DRB1*07:01, factor 4 HLA-A*01:01, factor 5 HLA-B*57:01, factor 6 HLA-

DRB1*01:01, and factor 7 HLA-B*58:01 (Supplementary Table 4). Afterward, a Spearman rank 

correlation was performed between the seven HLA allele frequencies and the risk of death at state level. A 

p-value <0.05 was considered statistically significant. The analyses were performed in Stata v14 and figure 

were created using Graphpad Prism version 6.0®.  

Results  

To assess the best Spike protein epitope-HLA class I matches, its sequence was analyzed looking for 

epitope predictions in the most frequent HLA-A and HLA-B alleles. The ten most immunogenic peptides 

with a higher affinity binding to its restricted HLA are shown in Table 1. 
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Although the most immunogenic peptide from this list is GTHWFVTQR, the match with the highest 

affinity was between the peptide FIAGLIAIV and HLA-A*02:03. Of note, here we analyzed the most 

frequent class I A and B alleles, so this analysis reveals epitopes that can be used for vaccine development 

and the HLA alleles that best present epitopes of this particular protein. 

The best epitopes and HLA class II alleles were also predicted, as shown in Table 2. The prediction tool for 

HLA class II uses a core of nine aminoacids to predict the binding efficiency of peptides to the pocket of 

the molecules, even if this core is in the middle of different peptides of 15 aminoacids. Interestingly, among 

this whole set of peptides, only seven HLA molecules resulted with a high binding affinity: HLA-

DPA1*01:03/DPB1*02:01, HLA-DPA1*02:01/DPB1*01:01, HLA-DPA1*03:01/DPB1*04:02, HLA-

DQA1*05:01/DQB1*03:01, HLA-DRB1*01:01, HLA-DRB1*07:01, and HLA-DRB1*09:01. 

To track down and illustrate the specific location of the peptides in the SARS-CoV-2 spike glycoprotein, 

the corresponding 3D model was obtained. In this model, the different predicted epitopes (Table 1 and 

Table 2) were searched in the protein structure considering its subunits and domains (Figure 1). Notably, 

HLA class I peptides WTAGAAAYY, SANNCTFEY, and YLQPRTFLL —7, 8, and 9— are located in the 

A domain, which is highly conserved among other coronavirus species 8, suggesting that these could also 

be epitopes for other coronaviruses. On the other hand, it was found that the class II epitopes 

FELLHAPAT, VVVLSFELL, FLVLLPLVS, VLSFELLHA, and FTISVTTEI —a, b, c, d, and h— and the 

HLA class I EVFNATRFA —4— are preferentially found in the B domain.  

HLA allele analysis and correlation with a predicted fatality rate in hospitalized patients 

After factorial analysis, we found a significant negative correlation between the frequency of the HLA-

DRB1*01:01 allele and the predicted fatality rate in hospitalized patients (R = -0.44, p-value=0.02) (Figure 

2). No other significant correlations were observed (Table 3). 

Discussion 

Determining HLA interactions with epitopes for optimal presentation is crucial for understanding the 

immunological response to SARS-CoV-2. Here, we present a group of epitopes of the spike protein that 
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can be efficiently presented to CD8 and CD4 T cells and are probably related to the virus’s immune-

mediated elimination. These peptides can be either used for the peptide-based design of vaccines or in 

further analysis of the immunogenicity and structure of this relevant protein.  

COVID-19 vaccine development includes 5 clinical-phase I vaccine candidates, 11 preclinical-vaccine 

candidates, and 26 research-stage vaccine candidates. 29 30 Recently, the full proteome of the SARS-CoV-2 

has been characterized through in silico analysis to show the prediction of the most immunogenic epitopes 

from each viral protein for 438 MHC alleles —either class I or class II—. 31,32 This knowledge has been 

considered in the design of two of the phase I-vaccine candidates, which are LV-SMENP-DC and 

Pathogen-specific aAPC. Nevertheless, most of the other vaccine candidates have been designed based on 

the Spike protein of the SARS-CoV-2 due to better immunogenic and protective potential. The S protein is 

the main target for COVID-19 vaccine development. Even though the S gene sequences of SARS-CoV-2 

have a 93.2% nucleotide sequence identity to the bat coronavirus RaTG13 and less than a 75% nucleotide 

sequence identity with the SARS-CoV, three out of the five phase I-vaccine candidates —which are 

mRNA-1273, Ad5-nCoV, and INO-4800s—, have been designed using this protein as the main target. 30, 

29. 

Remarkably, our structural analysis of the protein shows a higher abundance of epitopes in the A and B 

domains of the S1 subunit of the virus, indicating that, in the case of this part of the protein being processed 

by the host cells, it could represent a highly immunogenic region. In this analysis, we did not look for B 

cell epitopes in the structure of the protein. We cannot confirm that the specific target of the presented 

epitopes could interfere with its viral function, as would be the case of neutralizing antibodies. 

HLA peptide groove sequence determines which epitopes from an antigen are presented to the immune 

system to elicit an effective response. The high rate of polymorphisms in the HLA locus can indicate a 

different ability to respond to certain antigens by different individuals. Furthermore, some HLA alleles can 

be more efficient in presenting certain antigens, thus also in protecting from certain infections 11. Our 

analysis from the most representative HLA alleles revealed those that present more effectively the spike 
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protein antigens of SARS-CoV-2, hence, one can hypothesize that their presence in an individual might 

confer an enhanced ability to defend against the virus. 

To assess this, we analyzed the frequency of these alleles and their relation to the disease dynamics in 

different states of Mexico. Although it would be interesting to extrapolate these results to several countries 

with different epidemiological behavior of the disease, epidemiological reports would be highly 

heterogeneous and data at an individual level associated with risk of death would be needed to adjust the 

fatality rate.  

While there is a myriad of factors related to the lethality of the disease, little is known about the 

involvement of the immune system in this regard. It has been proposed that many patients develop an 

exaggerated immune response against the infection, accompanied by a cytokine releasing syndrome33 or 

autoinflammatory syndromes. 34 Also, Grifoni et al. showed that T helper cell responses (initiated by HLA 

class II molecules) seem to be protective against the infection through a strong correlation with the 

production of virus-specific antibodies, and also that they are highly represented by S-protein specific 

clones. 35  

A significant negative correlation was found between the frequency of the class II HLA-DRB1*01 allele 

and the fatality rate in hospitalized patients from the states that were included. Remarkably, this correlation 

was weak, suggesting that other important factors apart from HLA could be involved in the protection. 

Therefore, it is plausible that the correlation we found based on bioinformatic predictions, would mean that 

these alleles could show some degree of protection against lethal outcomes of the disease. Although, the 

frequency of this specific allele is low in the different states, so the overall effect in fatality rates might be 

small. Thus, further experimental studies are needed to reinforce these outcomes.  

HLA-DRB1*01 alleles have been previously associated with multiple sclerosis resistance 36. Nevertheless, 

its role in the susceptibility to viral diseases remains poorly understood. A recent report demonstrated, 

using molecular docking, that this molecule can interact with the VYQLRARSV epitope from the ORF-7a 

protein of the SARS-CoV-2 virus 37. Our results revealed an ecological negative correlation of this allele 

and that it can present a set of epitopes. Previous reports have identified that this allele can present at least 
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nine epitopes of the M protein and 11 of the N protein (Supplementary Table 4), revealing that this 

molecule can be highly relevant for SARS-CoV-2 immunity. 

A remarkable characteristic of this study is that we narrowed it to the S protein, which has been the most 

used target for vaccine development. Considering that we did not include other viral proteins, we made an 

exhaustive bibliographic review that allowed us to compile a total of 77 T cell epitopes for the M protein 

and 87 for the N protein that were already evaluated experimentally and included an analysis of the HLA 

alleles used for its prediction. As shown in the Supplementary Table 4, the HLA-A*26:01, HLA-

A*03:01, HLA-A*11:01, HLA-A*31:01, HLA-A*32:01, HLA-A*68:01, HLA-B*57:01, HLA-B*58:01, 

HLA-A*01:01, HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*68:02, HLA-A*23:01, HLA-

A*24:02, HLA-B*35:01, HLA-A*30:02, and HLA-DRB1*01:01 alleles —which resulted in our epitope 

prediction— can also be effective presenting peptides of other proteins like M and N. 

Other studies have reported an association between HLA I alleles and several SARS-CoV outcomes within 

specific populations: HLA-B*07:03 with infection rate in China12; or HLA-B*46:011314 with severity and 

HLA-Cw*08 with infection in Taiwan.38 Besides, HLA-DR*03*01 has been associated with a lower 

frequency of SARS-CoV infection38.  

Several limitations need to be acknowledged. First, the association of the frequency of the HLA allele and 

fatality rate is ecological and cannot be applied at an individual level. Other studies need to be conducted to 

explore if the association persists at an individual level in hospitalized patients. Second, the predictive 

model of the fatality case was conducted using only data from hospitalized patients. Given that different 

comorbidities can lead to hospitalization, we cannot exclude the possibility of collider bias. That is, the 

conditioning of analysis on hospitalization can produce biased associations between the risk factors and the 

outcome "fatality rate" in this case. Third, we do not rule out the possibility of misclassification since the 

information on comorbidities is self-reported. However, our aim was not to make an inference of the 

fatality rate at an individual-level factor, but rather to create a predictive model that was as less biased as 

possible. Fourth, there may be other state characteristics that are associated with death, such as the health 

infrastructure or the number of available specialized medical staff that are not considered in the model. 
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Finally, the HLA allele frequencies do not include minorities like the indigenous population, who might 

have different HLA alleles frequencies. 
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Figures  

 

Figure 1. Localization analysis of immunogenic peptides of SARS-CoV-2 Spike Glycoprotein by 3D modeling. (A) 

Structure of the SARS-CoV-2 spike glycoprotein with S1-S2 subunits. The S1 domains consist of A, B, C, and D. The 

S2 subunit consists of the fusion peptides and domains HR1 and HR2. (B) The predicted epitopes for HLA class I are 
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shown in red (C) and the suggested peptides for HLA class II in blue. The peptides are marked individually, listed from 

1-10 for class I and a-j for class II, corresponding to the immunogenicity Table 1 and Table 2.  
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Figure 2. Spearman’s correlation of HLA-DRB1*01:01 frequency and fatality rate. The correlation is shown as a 

dot plot graph with the regression tendency line. The frequency of this HLA allele in Mexico was obtained and a 

correlation was performed with the predicted risk of death associated with SARS-CoV-2 infection in hospitalized 

patients. According to the bioinformatic prediction, the HLA-DRB1*01:01 molecule can efficiently present eleven of 

the S protein predicted epitopes (LSFELLHAPATVCGP, VLSFELLHAPATVCG, VVLSFELLHAPATVC, 

SFELLHAPATVCGPK, VVVLSFELLHAPATV, FELLHAPATVCGPKK, FVFLVLLPLVSSQCV, 

MFVFLVLLPLVSSQC, VFLVLLPLVSSQCVN, FLVLLPLVSSQCVNL, and RVVVLSFELLHAPAT) (Table 2).  

Table 1. HLA Class I epitope prediction  

 Peptide/ protein 
residues 

(Predicted 
immunogenicity 
score) 

HLA Restriction      

1 GTHWFVTQR 
/1096-1104 

HLA-
A*31:0
1 

HLA-
A*68:0
1 

HLA-
A*11:0
1 

HLA-
A*03:0
1 

   

(0.3513) 
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  Predicted IC50 9.5 14.5 29.6 379.3    

2 RSFIEDLLF/ 
813-821 

HLA-
B*58:0
1 

HLA-
B*57:0
1 

HLA-
A*32:0
1 

    

(0.2744) 

 Predicted IC50  7.5 24.6 62.7     

3 FIAGLIAIV/ 
1218-1224 

HLA-
A*02:0
3 

HLA-
A*02:0
6 

HLA-
A*02:0
1 

HLA-
A*68:0
2 

   

(0.272) 

 Predicted IC50 3.2 6.3 8.5 13.7    

4 EVFNATRFA / 
338-346 

HLA-
A*68:0
2 

      

(0.2182) 

 Predicted IC50 12       

5 QYIKWPWYI / 
1205-1213 

HLA-
A*23:0
1 

HLA-
A*24:0
2 

     

(0.2162) 

 Predicted IC50 4.3 6.9      

6 NTQEVFAQV / 
775-783 

HLA-
A*68:0
2 

      

(0.1788) 
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  Predicted IC50 5.2       

7 WTAGAAAYY 
/256-264 

HLA-
A*26:0
1 

HLA-
A*68:0
1 

HLA-
A*01:0
1 

HLA-
A*30:0
2 

   

(0.1525) 

 Predicted IC50  

9.9 

27.4 31.1 36.4    

8 SANNCTFEY 
/160-168 

HLA-
B*35:0
1 

      

(0.1327) 

 Predicted IC50 14.1       

9 YLQPRTFLL 
/267-275 

HLA-
A*02:0
1 

HLA-
A*02:0
3 

HLA-
A*02:0
6 

HLA-
B*08:0
1 

HLA-
A*23:0
1 

HLA-
A*24:0
2 

HLA-
A*32:0
1 

(0.1305) 

 Predicted IC50 4.1  

7.8 

 9.1 23.9 125.3 201.3 202.7 

1
0 

VVFLHVTYV 
/1057-1065 

HLA-
A*02:0
3 

HLA-
A*02:0
6 

HLA-
A*02:0
1 

HLA-
A*68:0
2 

   

(0.1278) 

 Predicted IC50 9.3 11.9 21.2 24.5    
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Table 2. HLA Class II epitope prediction  

 SMM Core  Peptides HLA- Restriction  Percentil
e rank  

a FELLHAPAT LSFELLHAPATVCGP HLA-DRB1*01:01 0.03 

  VLSFELLHAPATVCG HLA-DRB1*01:01 0.03 

  VVLSFELLHAPATVC HLA-DRB1*01:01 0.03 

  SFELLHAPATVCGPK HLA-DRB1*01:01 0.09 

  VVVLSFELLHAPAT
V 

HLA-DRB1*01:01 0.09 

  FELLHAPATVCGPK
K 

HLA-DRB1*01:01 0.71 

b VVVLSFELL QPYRVVVLSFELLH
A 

HLA-
DPA1*03:01/DPB1*04:0
2 

0.24 

  PYRVVVLSFELLHAP HLA-
DPA1*03:01/DPB1*04:0
2 

0.25 

  YRVVVLSFELLHAP
A 

HLA-
DPA1*03:01/DPB1*04:0
2 

0.25 

  PYRVVVLSFELLHAP HLA-
DPA1*02:01/DPB1*01:0
1 

0.3 

  QPYRVVVLSFELLH HLA-
DPA1*02:01/DPB1*01:0

0.3 
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A 1 

  YQPYRVVVLSFELL
H 

HLA-
DPA1*02:01/DPB1*01:0
1 

0.3 

  YRVVVLSFELLHAP
A 

HLA-
DPA1*02:01/DPB1*01:0
1 

0.3 

  PYRVVVLSFELLHAP HLA-
DPA1*01:03/DPB1*02:0
1 

0.36 

  QPYRVVVLSFELLH
A 

HLA-
DPA1*01:03/DPB1*02:0
1 

0.36 

  YQPYRVVVLSFELL
H 

HLA-
DPA1*01:03/DPB1*02:0
1 

0.36 

  YRVVVLSFELLHAP
A 

HLA-
DPA1*01:03/DPB1*02:0
1 

0.36 

  RVVVLSFELLHAPAT HLA-
DPA1*02:01/DPB1*01:0
1 

0.63 

  VVVLSFELLHAPAT
V 

HLA-
DPA1*02:01/DPB1*01:0
1 

0.68 

  RVVVLSFELLHAPAT HLA-
DPA1*03:01/DPB1*04:0
2 

0.85 
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   YQPYRVVVLSFELL

H 
HLA-
DPA1*03:01/DPB1*04:0
2 

2.2 

c FLVLLPLVS FVFLVLLPLVSSQCV HLA-DRB1*01:01 0.24 

  MFVFLVLLPLVSSQC HLA-DRB1*01:01 0.24 

  VFLVLLPLVSSQCVN HLA-DRB1*01:01 1.3 

  FLVLLPLVSSQCVNL HLA-DRB1*01:01 1.8 

d VLSFELLHA RVVVLSFELLHAPAT HLA-DRB1*01:01 0.24 

e GYQPYRVVV GYQPYRVVVLSFEL
L 

HLA-
DPA1*02:01/DPB1*01:0
1 

0.3 

f FGAGAALQI SGWTFGAGAALQIP
F 

HLA-DRB1*09:01 0.33 

  TSGWTFGAGAALQI
P 

HLA-DRB1*09:01 0.34 

  GWTFGAGAALQIPF
A 

HLA-DRB1*09:01 0.35 

  WTFGAGAALQIPFA
M 

HLA-DRB1*09:01 0.67 

  WTFGAGAALQIPFA
M 

HLA-
DQA1*05:01/DQB1*03:0
1 

1.6 

g FVFLVLLPL MFVFLVLLPLVSSQC HLA-
DPA1*03:01/DPB1*04:0

0.34 
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2 

  FVFLVLLPLVSSQCV HLA-
DPA1*03:01/DPB1*04:0
2 

0.36 

  MFVFLVLLPLVSSQC HLA-
DPA1*01:03/DPB1*02:0
1 

5.2 

h RVVVLSFEL GYQPYRVVVLSFEL
L 

HLA-
DPA1*01:03/DPB1*02:0
1 

0.36 

  GYQPYRVVVLSFEL
L 

HLA-
DPA1*03:01/DPB1*04:0
2 

6.2 

i FTISVTTEI AIPTNFTISVTTEIL HLA-DRB1*07:01 0.4 

  PTNFTISVTTEILPV HLA-DRB1*07:01 0.51 

  IPTNFTISVTTEILP HLA-DRB1*07:01 0.52 

  TNFTISVTTEILPVS HLA-DRB1*07:01 0.52 

  NFTISVTTEILPVSM HLA-DRB1*07:01 2.5 

  FTISVTTEILPVSMT HLA-DRB1*07:01 2.6 

j TNFTISVTT IAIPTNFTISVTTEI HLA-DRB1*07:01 0.47 

 

Table 3. Correlation between the representative HLA alleles (7) resulted from 
factorial analysis and fatality rate in Mexico states (n=26) 
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   R p value 

F1: HLA-A*68 0.15 0.45 

F2: HLA-A*11:01 -0.3 0.12 

F3: HLA-DRB1*07:01 0.11 0.6 

F4: HLA-A*02:01 0.05 0.79 

F5: HLA-B*57:01 0.35 0.07 

F6: HLA-DRB1*01:01 -0.44 0.02 

F7: HLA-B*58:01 -0.14 0.49 

Spearman rank correlation 

 




